
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, AUGUST 2018 1837

Joint Optimization of Flow Table and Group
Table for Default Paths in SDNs

Gongming Zhao , Hongli Xu , Member, IEEE, Shigang Chen, Fellow, IEEE,

Liusheng Huang, Member, IEEE, and Pengzhan Wang

Abstract— Software-defined networking (SDN) separates the
control plane from the data plane to ease network management
and provide flexibility in packet routing. The control plane
interacts with the data plane through an interface that config-
ures the forwarding tables, usually including a flow table and
a group table, at each switch. Due to high cost and power
consumption of ternary content addressable memory, commodity
switches can only support flow/group tables of limited size,
which presents serious challenge for SDN to scale to large
networks. One promising approach to address the scalability
problem is to deploy aggregate default paths specified by wildcard
forwarding rules. However, the multi-dimensional interaction
among numerous system parameters and performance/scalability
considerations makes the problem of setting up the flow/group
tables at all switches for optimal overall layout of default paths
very challenging. This paper studies the joint optimization of
flow/group tables in the complex setting of large-scale SDNs.
We formulate this problem as an integer linear program, and
prove its NP-hardness. An efficient algorithm with bounded
approximation factors is proposed to solve the problem. The
properties of our algorithm are formally analyzed. We implement
the proposed algorithm on an SDN test bed for experimental
studies and use simulations for large-scale investigation. The
experimental results and simulation results show that, under
the same number of flow entries, our method can achieve
better network performance than the equal cost multipath while
reducing the use of group entries by about 74%. Besides, our
method can reduce the link load ratio and the number of flow
entries by approximately 13% and 60% compared with DevoFlow
with 10% additional group entries.

Index Terms— Software defined networks, default paths, load
balancing, flow table, group table.

I. INTRODUCTION

SOFTWARE defined networking (SDN) separates the con-
trol and data planes to different devices. Consisting of

Manuscript received August 25, 2017; revised January 23, 2018 and
April 11, 2018; accepted June 8, 2018; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor S. Uhlig. Date of publication August 2,
2018; date of current version August 16, 2018. This work was supported in
part by the NSFC under Grant 61472383, Grant U1709217, Grant 61728207,
and Grant 61472385, and in part by the Natural Science Foundation of Jiangsu
Province in China under Grant BK20161257. The work of S. Chen was
supported by the NSF under Grant STC-1562485 and Grant CNS-1719222.
Some preliminary results of this paper were published in the Proceedings of
IEEE ICNP 2017 [1]. (Corresponding author: Hongli Xu.)
G. Zhao, H. Xu, L. Huang, and P. Wang are with the School of

Computer Science and Technology, University of Science and Technol-
ogy of China, Hefei 230027, China, and also with the Suzhou Institute
for Advanced Study, University of Science and Technology of China,
Suzhou 215123, China (e-mail: zgm1993@mail.ustc.edu.cn; xuhongli@
ustc.edu.cn; lshuang@ustc.edu.cn; pzwang@mail.ustc.edu.cn).
S. Chen is with the Department of Computer & Information Science &

Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
sgchen@ufl.edu).
Digital Object Identifier 10.1109/TNET.2018.2853587

one or a cluster of controllers, the control plane provides
logically centralized management by deciding and installing
proper forwarding rules on switches. The switches, which
comprise the data plane of an SDN network, perform packet
forwarding based on the installed rules. Thanks to SDN’s
flexibility in network management and capability in rapid
deployment of new functionalities, there is an increasing inter-
est of deploying SDN in different networking environments,
such as wide-area networks [2], and data centers [3].
In an SDN network, the control plane interacts with the

data plane through an interface that configures the forwarding
tables. As specified in the OpenFlow standard [4], each SDN
switch usually has two forwarding tables for installing rules:
the flow table and the group table. Each entry in the flow
table (also called flow entry) specifies an action for flows that
match the fields in the entry. Each entry in the group table
(also called group entry) can specify more than one action.
A flow entry may refer to a group entry in order to apply
multiple actions to its matching flows; this mechanism can be
used to support more complex operations, such as multi-path
forwarding and multicasting [5].
One serious challenge faced by SDN is that the sizes

of flow/group tables are very limited on today’s commodity
switches. Considering the process speed, price and energy con-
sumption of the switch, most of today’s commodity switches
only support just 2-20K entries [6]. Moreover, the limited
number of flow/group entries may have to be shared by
routing/performance/measurement/security functions that are
implemented on the same chip. For example, if the controller
expects some flows to be processed by middleboxes, there
should install extra rules for these flows on switches [7].
Hence, the memory for storing forwarding rules is often small,
which is a limiting factor on the scalability of the network.
Yet, large SDN networks are experiencing more and more
flows. For example, in a practical data center network with
1,500 server clusters [8], the average arrival rate reaches 100k
flows per second. If we perform per-flow routing, it will
require a large number of flow entries at each switch. Since the
switches do not have enough flow entries for so many flows,
we are unable to provide service for new flows or we have
to replace existing entries in the table with new forwarding
rules, which causes churns and increases the controller load
to repetitively deploy paths for the same flows. Therefore, per-
flow routing is impractical for large-scale networks [9], [10].
To address the size limitation of the flow/group tables,

an interesting idea is to deploy aggregate routing (or default
paths) specified by wildcard rules. For example, we may
perform prefix aggregate routing (instead of per-flow routing),
where flows with the same address prefix will share a common
path. As a result, it requires fewer flow entries for all flows.
However, since all flows that match a flow entry will always

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1838 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, AUGUST 2018

be forwarded to the same next hop, it may cause imbalance in
traffic load distribution, where some paths are congested while
alternative paths are left under-utilized [2]. One may say that
we can combine aggregate routing and per-flow routing to
avoid load imbalance. However, our simulation results show
that the number of required flow entries for the combined
routing scheme is still unacceptable for many commodity
switches, especially with a large number of flows. To choose
some large (or elephant) flows for per-flow routing [11], [12],
we need to know the traffic intensity of all flows in the
network. Thus, the flow statistics collection (FSC) is necessary.
However, FSC is time-consuming and resource-intensive in a
large-scale dynamic network [10], [13]. Thus, the aggregate
routing (or combined with per-flow routing) may not work
well for many practical applications.
The idea of multi-path routing holds great promise of solv-

ing the dilemma between the desire for network performance
and the practical limitation in the number of forwarding rules.
To support multi-path forwarding, a flow entry may refer to
a group entry, in which multiple next hops are specified. The
matching flows will be randomly dispatched to the multiple
downstream paths [14], [15]. ECMP is a widely used multi-
path routing protocol in large-scale networks as it provides
load balancing over equal cost paths through group tables [16].
However, ECMP performs poorly in asymmetric topologies,
which are common topologies in today’s networks due to
link failures and heterogeneous network components [15].
Moreover, ECMP directly installs group entries on switches
when there exist some equal-cost paths to the destination. This
method does not consider the group table size constraint and
the weight allocation of each action bucket. Since the number
of group entries is less than the number of flow entries, and
the number of processing rules (i.e., action buckets specified
in OpenFlow) supported by each group entry is limited, how
to efficiently use these group entries is also a challenge.
Therefore, alternative solutions adapted to both asymmetric
and symmetric topologies under group table size and action
buckets constraints are in urgent need.
The prior works [14]–[16] have focused on how to achieve

multi-path packet forwarding operations at the switches after
the controller has already decided the multi-path routing
strategy of each flow (source-destination pair). This paper
addresses the complementary problem at the controller on
how to optimally decide the default paths for all flows and
the corresponding flow/group rules at all switches. This is
a fundamental and complex problem that directly affects
network performance.
It is highly desired to reduce the number of entries that are

used to support default paths, so that more flow entries can be
reserved for supporting other policies (e.g., middlebox deploy-
ment, management and security [7]) and more group entries
can be used for other purposes such as multicasting [5]. This
is however a difficult undertaking. To address this challenge,
we study the joint optimization of flow table and group table in
a large-scale network. We formulate this problem as an integer
linear program, and prove its NP-hardness. A rounding-based
algorithm with bounded approximation factors is proposed to
solve the problem. The properties of the algorithm are formally
analyzed. We implement the proposed algorithm on an SDN
testbed for experimental studies and use simulations for large-
scale investigation. The experimental results and simulation
results show that, under the same number of flow entries, our
method can achieve better network performance than ECMP

while reducing the use of group entries about 74%. Besides,
with 10% additional group entries, our method can reduce link
load ratio about 13% compared with DevoFlow while reducing
the use of flow entries about 60%.
The rest of this paper is organized as follows. Section II

introduces the preliminaries and problem definition.
In Section III, we propose an algorithm to deal with
the DP-JFG problem, and give some discussion. The testing
results and the simulation results are given in Section IV.
Section V reviews the related works on the deployment of
default paths. We conclude the paper in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Network Model

A software defined network typically consists of three
device sets: a terminal set, U = {u1, . . . , um}, with m = |U |;
an SDN switch set, V = {v1, . . . , vn}, with n = |V |; and a
cluster of controllers. The controllers are responsible for route
selection of all flows in the network and will not participate in
the packet forwarding. These switches and terminals comprise
the data/forwarding plane of an SDN. Thus, on the view of the
data plane, the network topology can be modeled by a directed
graph G = (U ∪ V, E), where E is the directed link set in
the network. For ease of expression, let c(e) and E(v) denote
the capacity of link e ∈ E and the set of links outgoing from
switch v ∈ V in graph G, respectively.
The OpenFlow specification (from the earlier ver-

sion 1.1 [17] to the latest version 1.5.1 [18]) defines two main
types of tables in the logical switch architecture: the Flow
Table and Group Table. In an SDN network, each controller
will interact with switches through the flow table and group
table. More specifically, if a switch can match an incoming
packet with a particular flow entry, the action specified by
this flow entry will be performed. If no matched flow entry
is found, the switch will report the header packet of this flow
to the controller, which then determines the flow’s route and
installs the forwarding rules on the switches along this path.
In order to support multi-path forwarding or multicast, a group
table is necessary. Due to the high price of Ternary Content
Addressable Memory (TCAM), the forwarding table size of
an SDN switch is usually limited. Most commodity switches
contain less than 4k flow entries [10], [19] and 1k group
entries [20]. For example, Pica8 P-3290 switch only support
about 2k flow entries [21], which is not enough for per-flow
routing in most large-scale networks. For ease of reference,
Table I summarizes the key notations.

B. Interaction Between Flow Table and Group Table

We introduce the operational interaction between the flow
table and group table. When a flow reaches a switch,
the header packet will be matched with entries in the flow
table. If there is a matched flow entry, the packet will be
processed based on the Instructions field of this flow entry,
such as forwarding to a certain port or dropping. Alterna-
tively, it may refer to a specific group entry, which mainly
contains Group Identifier field and Action Buckets field. More
specifically, the group identifier field uniquely identifies the
group entry, and the Action Buckets field specifies the complex
operational rules for the matched flow(s). A group table is
unable to work without the help of a flow table. In other
words, a group entry will be matched and executed only if

ZHAO et al.: JOINT OPTIMIZATION OF FLOW TABLE AND GROUP TABLE FOR DEFAULT PATHS IN SDNs 1839

TABLE I

KEY NOTATIONS

Fig. 1. Illustration of Interaction between Flow Table and Group Table. The
right two plots denote the flow table and group table on switch v1. When
v1 receives packets whose destination is u3 with IP address 3.0.0.1, this
switch will find a matched flow entry. Since its instructions field is pointed
to a group entry 5566, the switch then finds the entry with group identifier
5566. Finally, these packets will be processed by the action buckets in the
matched group entry.

a flow entry uses an appropriate instruction that refers to its
group identifier.
We illustrate the interaction between the flow table and

group table by an example. As shown in Fig. 1, assume that
server u1 needs to forward packets to server u3. Two feasible
paths u1−v1−v3−v4−u3 and u1−v1−v2−v4−u3 can be
used. For switch v1, there are two next-hop switches {v2, v3}.
In order to achieve load balancing, we install one flow entry
and one group entry. The flow table and group table are shown
in Fig. 1. Specifically, we need a flow entry for u3 as follows:
Match field is Dst = 3.0.0.1 and Instructions field is Group :
5566, which is the identifier for the group entry. The action
buckets in the group entry contain two buckets (output:2 and
output:3), which mean that packets matching this group entry
will be forwarded to port 2 or port 3 (based on given weights).
If the given weights of ports 2 and 3 are 0.4 and 0.6, 40% and
60% of the matched traffic will be forwarded to port 2 and
port 3, respectively. Note that a macroflow may contain many
microflows, and each microflow is forwarded to a single path
to avoid packet-reordering. Packets are processed as follows:
when switch v1 receives packets whose destination is u3 with

IP address 3.0.0.1, this switch will find a matched flow entry.
Since its instructions field is pointed to a group entry 5566,
the switch finds the entry with group identifier 5566 in the
group table. Finally, these packets will be processed by the
action buckets in the matched group entry.

C. Default Path by Joint Optimization of Flow Table and
Group Table (DP-JFG)

This section provides a more precise description of the
DP-JFG problem. Similar to [9], [10], [22], we assume that
the controllers have pre-deployed aggregate paths based on
destination terminals (e.g., OSPF-based paths). That is, each
switch has installed a flow entry for each destination. Thus,
the number of occupied flow entries for default paths on each
switch is nearly equal to the number of terminals in U , which
is usually less than the number of flow entries. Note that our
proposed algorithm and theorems are also applicable for other
schemes of pre-deployed paths (e.g., prefix-match paths based
on rack or edge switch). It will be discussed in Section III-D.
In this paper, we mainly consider default path routing. For

simplicity, all flows with the same source terminal and des-
tination terminal will be aggregated into one macroflow. The
set of all macroflows in the network is denoted by Γ. Let Γu

denote all the macroflows with the same destination terminal
u ∈ U . Due to the prior work of traffic matrix estimation on
SDNs [23], it is reasonable to assume that the controller knows
the traffic demand, denoted by f(γ), of each macroflow γ ∈ Γ
through long-term observation. One may say that the traffic
demand of each flow may change drastically. To solve this
challenge, similar to the previous methods [10], [22], we also
re-route some elephant flows for better network performance,
such as load balancing and throughput maximization, which
will be discussed in Section III-D. We use Pγ to represent a set
of feasible paths from source to destination for each macroflow
γ ∈ Γ. These paths can be pre-computed based on the network
topology and dynamically updated at the controller by an
OSPF-like protocol after link state information is collected
from all switches. When computing the feasible paths, if there
exist security or management policies, we should take these
policies into consideration [7]. Hence, we assume that if
there is any user-specified policy, the pre-computed paths will
conform. We further discuss Pγ in Section III-A.
As described in Section II-B, if more than one default path

for the same destination is deployed, we need to use group
entries on some switches. When a group entry is installed,
we should specify each action bucket and its weight. For
simplicity, let G(v) denote the number of available group
entries for deploying default paths on an SDN switch v.
Since some group entries should be reserved for other appli-
cations, such as multicast and broadcast, G(v) is less than the
maximum number of group entries on a switch v [5]. Note
that, after installing the group entries, we should modified
the instruction fields of some flow entries so as to refer to
the corresponding group entries. For each macroflow, we will
add some (or zero) feasible paths as default paths subject to
following two constraints. (1) The number of required group
entries on each switch should not exceed G(v). (2) Due to the
capacity limitation, we assume that each group entry can only
support up to h buckets. For example, h is 4 for the Broadcom
Trident switch [20]. Note that, with our proposed method,
the number of required flow entries on any switch is nearly
equal to the number of terminals (edge switches or tacks) in a

1840 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, AUGUST 2018

Fig. 2. Illustration of variable Iu
v,p. The pre-deployed path from switch

v1 to terminal u2 is v1 → v3 → u2. There are two feasible paths from
u1 to u2, p1 = u1 → v1 → v3 → u2 and p2 = u1 → v1 → v2 →
v3 → u2. The next hop of v1 on p2 is v2, which does not overlap with the
pre-deployed path from v1 to u2, so Iu2

v1,p2 = 1. On the contrary, for path
p1, I

u2
v1,p1 = 0.

network, which means the number of flow entries is sufficient
to deploy default paths by our method. Thus, we do not need
to consider the flow table size constraint in this problem. Our
objective is to achieve load balancing in a network.
We will formulate the DP-JFG problem as an integer linear

program. Let variable yp
γ ∈ [0, 1] denote the traffic proportion

of macroflow γ through path p. Variable xu
e ∈ {0, 1} denotes

whether some traffic forwarded to terminal u will pass through
link e ∈ E or not. We use variable gu

v ∈ {0, 1} to denote
whether the macroflow set Γu consumes one entry towards
the group table size constraint on switch v ∈ V or not. Let
Iu
v,p be a binary constant as follows: if the next hop of switch

v on path p overlaps with the pre-deployed path from switch
v to destination u, we set Iu

v,p = 0, which means that there
is no need to install a group entry on switch v; otherwise
Iu
v,p = 1. An example is presented in Fig. 2 to explain this
variable. We assume that the pre-deployed path from switch v1

to terminal u2 is v1 → v3 → u2. There are two feasible paths
from u1 to u2, p1 = u1 → v1 → v3 → u2, and p2 = u1 →
v1 → v2 → v3 → u2. For switch v1, its next hop switch on p2

is v2, which does not overlap with the pre-deployed path from
switch v1 to terminal u2, so Iu2

v1,p2
= 1. That means, when path

p2 is selected as one of default paths, a group entry should be
installed on switch v1. On the contrary, the next hop of switch
v1 on p1 is v3, which overlaps with the pre-deployed path from
switch v1 to terminal u2, so Iu2

v1,p1
= 0. We formulate the DP-

JFG problem as follows:

min λ

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
p∈Pγ

yp
γ = 1, ∀γ ∈ Γ

yp
γ ≤ xu

e , ∀e ∈ p, p ∈ Pγ , γ ∈ Γu∑
e∈E(v)

xu
e ≤ h, ∀v ∈ V, u ∈ U∑

v∈p:p∈Pγ

Iu
v,p · yp

γ ≤ gu
v , ∀γ ∈ Γu, u ∈ U, v ∈ V∑

u∈U

gu
v ≤ G(v), ∀v ∈ V∑

γ∈Γ

∑
e∈p:p∈Pγ

yp
γf(γ)

≤ λc(e), ∀e ∈ E

yp
γ ∈ [0, 1], ∀p ∈ Pγ , γ ∈ Γ

xu
e , gu

v ∈ {0, 1}, ∀u ∈ U, v ∈ V

(1)

The first set of equations represents that each macroflow will
be forwarded through one or several feasible paths from source
to destination. The second set of inequalities denotes whether
fraction of traffic forwarded to terminal u will pass through

link e or not. If xu
e = 1, that means some traffic forwarded

to terminal u will pass through link e. Combining the second
and third constraints, we can guarantee that all traffic from set
Γu can be forwarded by no more than h ports on any switch
(i.e., action buckets constraint). The fourth set of inequalities
denotes that we need to install a group entry for macroflow
γ ∈ Γu on switch v if some traffic of γ ∈ Γu passes through
non-pre-deployed paths on switch v (i.e., Iu

v,p = 1). The next
two sets of inequalities indicate the group table size and link
capacity constraints, respectively. Our objective is to achieve
load balancing on all links, that is, min λ.
Since we formalize the DP-JFG problem as a complex

integer program, it is usually an NP-Hard problem.
Theorem 1: The DP-JFG problem is NP-hard.
We show that the Identical Parallel Machines Scheduling

(IPMS) problem [24] is a special case of the DP-JFG problem.
The detailed proof has been relegated to Appendix A.

III. ALGORITHM DESCRIPTION FOR
THE DP-JFG PROBLEM

A. Rounding-Based Algorithm for DP-JFG
In this section, we design a rounding-based algorithm for

deploying default paths, called RBDP. To solve the integer
linear program in Eq. (1), the algorithm first constructs a
linear program as a relaxation of the DP-JFG problem. More
specifically, DP-JFG assumes that the traffic of each macroflow
γ can be forwarded through at most h ports (or outgoing links)
on each switch. In the relaxed version, the traffic of each
macroflow γ can be arbitrarily split on any switch v and the
number of required group entries is permitted to be fractional.
We formulate the linear program LP1.

min λ

S.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
p∈Pγ

yp
γ = 1, ∀γ ∈ Γ∑

v∈p:p∈Pγ

Iu
v,py

p
γ ≤ gu

v , ∀γ ∈ Γu, u ∈ U, v ∈ V∑
u∈U

gu
v ≤ G(v), ∀v ∈ V∑

γ∈Γ

∑
e∈p:p∈Pγ

yp
γf(γ)

≤ λc(e), ∀e ∈ E

yp
γ ∈ [0, 1], ∀p ∈ Pγ , γ ∈ Γ

gu
v ∈ [0, 1], ∀u ∈ U, v ∈ V

(2)

Since Eq. (2) is a linear program, we can solve it in
polynomial time with a linear program solver. Assume that
the optimal solutions for Eq. (2) are denoted by ỹ and g̃, and
the optimal result is denoted by λ̃. As Eq. (2) is a relaxation
of the DP-JFG problem, λ̃ is a lower-bound result for this
problem. Then, we let ỹu

v = max{ỹu
v , 1− zu

v }. This operation
will be explained after Eq. (6).
In the second step, we determine how to install group entries

on each switch for default paths. We obtain an integer solution
ĝu

v using the rounding method [25], [26]. More specifically,
we set ĝu

v = 1, which means that a group entry will be
installed on switch v for terminal u, with the probability of g̃u

v .
If ĝu

v = 0, this means that all macroflows with destination
u will be forwarded through the link overlapped with pre-
deployed path on switch v and there is no need to install a
group entry.

ZHAO et al.: JOINT OPTIMIZATION OF FLOW TABLE AND GROUP TABLE FOR DEFAULT PATHS IN SDNs 1841

For each ĝu
v = 1, we discuss how to choose other h − 1

forwarding ports/links at most besides the link overlapped
with pre-deployed path for macroflows Γu on switch v and
how to determine the weight of each next hop based on
the solution of LP1. For ease of expression, eu

v denotes the
outgoing link overlapped with pre-deployed path from switch
v to destination u, and wu

v denotes the weight of eu
v in the

group entry. Let Eu(v) denote all the outgoing links connected
with switch v except eu

v , i.e., Eu(v) = E(v)−{eu
v}. For each

destination u, each link e ∈ Eu(v) will be assigned a weight
wu

e , initialized as 0, which denotes the weight of link in the
group entry.
Based on the solution of LP1, the total incoming traffic

forwarded to destination u on switch v is:

f̃(v, u) =
∑

γ∈Γu

∑
v∈p:p∈Pγ

ỹp
γf(γ) (3)

The proportion of traffic through the link eu
v is:

zu
v =

∑
γ∈Γu

∑
eu

v∈p:p∈Pγ
ỹp

γf(γ)

f̃(v, u)
(4)

The traffic amount through other links is (1− zu
v)f̃(v, u), and

the proportion of traffic through each link e ∈ Eu(v) is:

zu
e =

∑
γ∈Γu

∑
e∈p:p∈Pγ

ỹp
γf(γ)

(1 − zu
v)f̃(v, u)

. (5)

Obviously, we know that
∑

e∈Eu(v) zu
e = 1.

To guarantee the expected proportion of traffic through link
eu

v is zu
v after randomized rounding, w

u
v should satisfy:

(1 − g̃u
v) + g̃u

v · wu
v = zu

v ⇒ wu
v =

zu
v + g̃u

v − 1
g̃u

v

(6)

Due to ỹu
v = max{ỹu

v , 1 − zu
v }, we can guarantee wu

v ≥ 0.
To choose other appropriate h−1 outgoing links/ports at most
on switch v, the link set Eu(v), with zu

e > 0, is divided into
two subsets, Pb

v,u and P
s
v,u. First, we add each link e ∈ Eu(v)

with zu
e ≥ 1

h−1 into the set P
b
v,u and the weight for link e is:

wu
e = zu

e · (1 − wu
v). (7)

That means, we will select each link e ∈ Pb
v,u as one next hop

and the weight for this link is wu
e in the group entry. After

that, we add each link e ∈ Eu(v) − Pb
v,u, with zu

e > 0, into
the set Ps

v,u. If |Ps
v,u| > 0, we compute h′ = min{h − 1 −

|Pb
v,u|, |Ps

v,u|}, which indicates that we still need to choose h′
links as default paths to destination u. Then, we compute the
total proportion of traffic through links Ps

v,u as follows:

zs
v,u =

∑
e∈Ps

v,u

zu
e (8)

For each link e ∈ Ps
v,u, we define another variable p(e) =

h′·zu
e

zs
v,u
, Obviously, it follows that

∑
e∈Ps

v,u
p(e) = h′.

We put all links in Ps
v,u into h′ knapsacks so as to minimize

the total weight of all links in each knapsack. For each
knapsack j, assume that it contains a set of links, denoted
by Pj

v,u, and let zj =
∑

e∈P
j
v,u

p(e). One link e ∈ Pj
v,u will

be chosen with probability p(e)
zj
, and the weight of this link is:

wu
e =

zj · zs
v,u · (1 − wu

v)
h′ (9)

The weight for each link e ∈ E(v) in the group entry is wu
e .

The RBDP algorithm is formally described in Alg. 1.

Algorithm 1 RBDP: Rounding-Based Algorithm for DP-JFG
1: Step 1: Solving the Relaxed DP-JFG Problem
2: Construct a linear program LP1 in Eq.(2)
3: Obtain the optimal solutions ỹ and g̃
4: Compute f̃(v, u), zu

v with Eqs. (3),(4)
5: Let ỹu

v = max{ỹu
v , 1 − zu

v }
6: Step 2: Installing Entries for load balancing
7: Derive an integer solution ĝu

v by randomized rounding
8: for ∀ ĝu

v = 1 do
9: Compute wu

v with Eqs. (6)
10: for each e ∈ Eu(v) do
11: Compute zu

e with Eq. (5)
12: if zu

e ≥ 1
h−1 then

13: Add e into Pb
v,u and update wu

e with Eq. (7)
14: Add link e ∈ Eu(v) − Pb

v,u with zu
e > 0 into set Ps

v,u

15: if |Ps
v,u| > 0 then

16: Set h′ = min{h− 1 − |Pb
v,u|, |Ps

v,u|}.
17: Compute zs

v,u with Eq. (8)
18: for each e ∈ Ps

v,u do

19: p(e) = h′·zu
e

zs
v,u

20: Put links in h′ knapsacks with min-max weight
21: for for each knapsack j do
22: zj =

∑
e∈P

j
v,u

p(e)

23: Choose link e ∈ Pj
v,u with probability

p(e)
zj

24: Update wu
e with Eq. (9) for the chosen link e

25: Install a group entry on switch v for terminal u and the
weight for each connected link e ∈ E(v) is wu

e .

Note that, the number of feasible paths connecting two ter-
minals may be exponential and the feasible paths for different
macroflows to the same destination may lead to forwarding
loop. To achieve the trade-off between algorithm complexity
and network performance, same as [27], we only construct
some of the feasible paths for each macroflow. These feasible
paths may be the shortest paths between terminals, which
can be found by depth-first search. Since we consider the
shortest paths for each macroflow, the forwarding loop can
be avoided. For macroflow γu′,u from u′ to u, if there is
few (e.g., only one) feasible paths, we will add other feasible
paths to set Pγu′,u

as follows: We construct a directed graph
Gu = {V, Eu}, where Eu is the link set in Gu and initialized
as ∅. For each terminal t ∈ U , we add the feasible path set
Pγt,u to a directed graph Gu. Given a sub-shortest path p
for macroflow γu′,u, after we add path p to graph Gu, there
are two cases. If there is no loop in graph Gu, which means
that p will not lead to forwarding loop, we add this path to
Pγu′,u . Otherwise, we remove p from Gu. To decrease time
complexity, the computation of feasible paths is only triggered
by topology changes.

B. Performance Analysis
In this section, we will prove the correctness of our pro-

posed algorithm and analyze its approximation performance.
We first give the following lemma according to the rounding
operations.

1842 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, AUGUST 2018

Lemma 2: Our proposed RBDP algorithm can guarantee
that each macroflow γ will be forwarded through no more
than h outgoing links on each switch v ∈ V .

Proof: We consider an arbitrary macroflow γ ∈ Γu

on switch v. If we deploy a group entry on switch v for
destination u, then this macroflow γ will be forwarded based
on the corresponding group entry. Under this situation, by the
algorithm description, we divide the link set Eu(v), with
zu

e > 0, into two subsets, Pb
v,u and Ps

v,u. On one hand, all
links in set Pb

v,u will be chosen as default paths, thus the total
number of selected outgoing links from set Pb

v,u is |Pb
v,u|.

On the other hand, the algorithm chooses at most h′ links from
set Ps

v,u, which means the total number of selected outgoing
links from this set is no more than h′. Moreover, the link
eu

v will be included. Overall, the total number of selected
output ports/links on switch v ∈ V for Γu is no more than
|Pb

v,u| + h′ + 1 ≤ h. �
Lemma 3: The total weight of all the chosen links, i.e., all

the specified action buckets, configured on each group entry
is 1.
The proof of lemma 3 has been relegated to Appendix B.
Lemma 4: The RBDP algorithm can guarantee that the

expected traffic load on each link e is same as the solution
f̃(e) of the linear program LP1.
The proof of lemma 4 has been relegated to Appendix C.
In the following, we analyze the approximation performance

of the proposed algorithm. Assume that the minimum capacity
of all links is denoted by ce

min. We define two constant values
as follows:

α = min{ λ̃ce
min

f(γ)
, γ ∈ Γ}, α′ = min{G(v), v ∈ V } (10)

Under many practical application scenarios, the macroflow
intensity is usually much less than the link capacity, because
the macroflow intensity is not more than the corresponding
terminal-switch link capacity [11], [27]. Besides, G(v) is much
larger than 1 [20]. Thus, it is reasonable to assume that α 	 1
and α′ 	 1. We give the approximation performance of our
algorithm.

Theorem 5: The proposed RBDP algorithm guarantees that
the total traffic on any link e ∈ E will not exceed the traffic
of the fractional solution by a factor of at most4 log n

α + 3.
Due to space limit, we omit the proof of theorem 5. The

reader can refer to [12] for the performance analysis of the
randomized rounding method.

Theorem 6: After the rounding process, in most situation,
the number of required group entries on any switch v will not
exceed the number of available group entries G(v) by a factor
of 3 log n

α′ + 3.
The proof of theorem 6 has been relegated to Appendix D.
Approximation Factors: Following from our analysis,

by forwarding all the flows on chosen paths, the capacity of
links will hardly be violated by a factor of at most 4 log n

α +3,
and the group table size constraint will not be violated by
a factor of at most 3 log n

α′ + 3. It means that the algorithm
can achieve the optimal solution, violating the link capacity
constraint by at most a factor 4 log n

α +3 and the group table size
constraint by at most a factor 3 log n

α′ + 3, which is also called
as bi-criteria approximation. By scaling down the flow on each
chosen path by a factor of 4 log n

α + 3, link capacities are only
violated with negligible probability. This can be implemented
through traffic shaping on the hosts or ingress switches.

Moreover, we want to point out that the RBDP algorithm
can reach almost the constant bi-criteria approximation in
most situations. For example, let λ̃ and n be 0.4 and 1000,
respectively. We assume that we have a high-definition video
conference (the flow intensity may reach 4Mbps) and the
capacity of each switch-switch link is 100Mbps. Under this
case, ce

min
f(γ) will be 25. The approximation factor for the

link capacity constraint is 4.2. Since G(v) is usually at
least 102 [20], the approximation factor for the group table
constraint is 3.09. In other words, our RBDP algorithm can
achieve almost the constant bi-criteria approximation for the
DP-JFG problem in many practical network situations.

C. Complete RBDP Algorithm Description

According to theorem 6, we know that some switches
may violate the group table size constraint after the rounding
process. Thus, in practice, we need to remove some group
entries so as to satisfy the group table size constraints on all
switches. Below we give the complete RBDP algorithm so as
to satisfy this constraint on all switches. The complete RBDP
algorithm consists of three main steps. The former two steps
are the same as those in Alg. 1. By theorem 6, some switches
may violate the group table size constraint. Thus, the third step
will remove some redundant group entries so as to satisfy the
group table size constraints on all switches. Note that though
the group entries for some macroflows are removed, they will
still be forwarded through links overlapped with pre-deployed
paths on these switches. Let V ′ denote the set of switches that
violate the group table size constraint. We choose a switch v,
which requires the maximum number of group entries in V ′
by the second step. The set of terminals, for which switch v
has installed group entries, is denoted by Uv. The algorithm
ranks all the terminals in Uv by the increasing order of g̃u

v .
We remove the group entry for terminal u ∈ Uv one by one,
until the group table size constraint is satisfied on switch v.
Then we remove switch v from V ′. The iteration is terminated
until all switches satisfy the group table size constraint. The
complete RBDP algorithm is formally described in Alg. 2.

Algorithm 2 Complete RBDP Algorithm Description
1: Step 1: Same as step 1 in RBDP
2: Step 2: Same as step 2 in RBDP
3: Step 3: Removing Some Group Entries
4: Put all switches that violate the group table size constraint
in set V ′

5: while V ′
= φ do
6: Select a switch v ∈ V ′ with maximum number of

required group entries
7: The terminals that have installed group entries on switch

v is denoted by Uv

8: Rank terminals u ∈ Uv with the increasing order of gu
v

9: for each terminal u ∈ Uv do
10: Remove the group entry for terminal u, until the group

table size constraint on v is satisfied.
11: V ′ = V ′ − {v}

D. Discussion

• In this paper, we assume that the SDN has pre-
deployed terminal-based paths for simplicity. However,

ZHAO et al.: JOINT OPTIMIZATION OF FLOW TABLE AND GROUP TABLE FOR DEFAULT PATHS IN SDNs 1843

our proposed algorithm is also applicable for other pre-
deployed path schemes. For example, assume that the
network has pre-deployed prefix-match paths based on
egress switches. To deal with this case, we only need to
change the variables related to destination u (e.g., gu

v and
xu

e) to variables related to egress switch ve (e.g., gve
v and

xve
e). Specifically, variable gve

v denotes whether switch v
needs to install a group entry for egress switch ve or not,
which is very similar to variable gu

v . So, our proposed
algorithm can be extended to several types of default
routing, e.g. routing on prefixes. We should note that
different pre-deployed path schemes may require different
number of required flow entries and routing performance.
The pre-defined path scheme may be determined by the
application’s requirement.

• Due to traffic dynamics in a network, if we deploy
default paths statically, the network performance may
become worse. Thus we should update the default paths
to avoid sub-optimal flow routes that may cause net-
work congestion. However, if we update default paths
frequently, since each default path may match many
flows, it may affect the corresponding flows and decrease
network performance. Thus, to achieve trade-off between
network performance and update frequency, we will re-
run the RBDP algorithm in the following situations. (1)
The topology changes, which will trigger the update of
default paths. (2) We compute the optimal load balancing
factor by LP1 at a suitable interval (e.g., 5 minutes), and
compare with the current load balancing factor. If the
ratio between the optimal value and the current value
is less than a threshold, we should trigger the RBDP
algorithm and update the deployment of default paths in
an SDN network.

• During each update interval of default paths, the traffic
of each individual flow also changes with time. To obtain
better network performance, we adopt the combination
scheme of default paths and per-flow paths [10], [22].
Specifically, we divide each (long) update interval of
default paths (e.g., 5 minutes) into some (short) intervals
(e.g., 1 minute). During each (short) interval, we first
obtain the information of some elephant flows by sam-
pling traffic [10]. Then the controller computes the least
congested path for each of these elephant flows, and re-
routes these flows by per-flow routing. In this case, we
can achieve better network performance, which will be
assessed in our simulations.

IV. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks

We adopt seven main metrics for performance evaluation
of our proposed algorithm. Since this paper studies how
to deploy efficient default paths by joint optimization of
flow/group tables on each switch, we care for the use of
flow/group entries and routing performance, respectively. The
first four metrics are the maximum/average number of required
flow/group entries on all the switches in an SDN network.
After executing these algorithms, we measure the number of
installed flow/group entries on each switch, and compute the
maximum/average number of installed flow/group entries in
an SDN network. Moreover, we adopt link load ratio (LLR)
and network throughput factor (NTF) as two metrics of the
routing performance. At run-time, we measure the traffic load

f(e) of each connected link e, and the link load ratio is defined
as: LLR = max{f(e)/c(e), e ∈ E}. A smaller LLR means
better load balancing. When there is congestion on some links,
we can only forward fractional traffic to the destination. For
each macroflow γ, the traffic of δ · f(γ) at most can be
forwarded from source to destination without link congestion,
where δ is the network throughput factor, with 0 < δ ≤ 1.
The last metric is the cumulative distribution function (CDF)
of the link load ratio on all links in a network.
To evaluate how well our proposed algorithm performs,

we compare with other five benchmarks. The first benchmark
is the most widely used OSPF method [28]. Each switch
will construct the shortest path to each destination, that is,
each switch will install a flow entry for each terminal. Thus,
the number of required flow entries does not exceed the
number of terminals in a network. We will compare our
algorithm with this benchmark for routing performance while
using the same number of flow entries. The second one is
ECMP [14], which is widely applied for performance opti-
mization in data center networks. ECMP needs to install group
entries on switches when there exist some equal-cost paths to
the destination. Otherwise, flows will be forwarded through
the OSPF paths without the help of group entries. Since
the number of group entries is limited, the group table size
constraint may likely be violated by ECMP. To be practical,
we only install group entry for destination u on switch v when
there exist some equal-cost paths and have spare group entries
on switch v. Otherwise, we forward flows with destination u
through single path by flow entry. We denote this modified
method as ECMP-G for distinguishing with ECMP. The fourth
one is DevoFlow [10]. It combines pre-installed wildcard
rules and dynamically-established exact-match rules for high
scalability. We first deploy OSPF-based wildcard rules, then
sample some elephant flows to re-route through exact-match
entry under flow table size constraint so as to achieve load
balancing. The last one is the optimal result for the linear
program LP1 in Eq. (2). Since LP1 is the relaxed version of
the DP-JFG problem, we denoted this result as OPT-R. OPT-R
is a lower-bound for DP-JFG.
For a fair comparison, RBDP, OSPF, ECMP and ECMP-G

all adopt the destination-based prefix-match scheme for default
paths in our simulations, so that these methods require
the same number of flow entries. Moreover, as OSPF and
DevoFlow do not support the multi-path forwarding in our
simulations, they need no group entry accordingly. So, we just
compare RBDP with DevoFlow for the number of required
flow entries and compare RBDP with ECMP for the number
of group entries.

B. System Implementation on SDN Platform

1) Implementation on the Platform: We implement the
OSPF, DevoFlow, ECMP, ECMP-G and RBDP algorithms on a
small-scale testbed. Our SDN platform is comprised of three
parts: a controller, 7 SDN-enabled physical/virtual switches
and 6 virtual machines (acting as terminals). To expand the
testing topology and collect testing data conveniently, we rely
on virtualization technology for system implementation. Each
open virtual switch (OVS, version 2.4.0) [29] and the con-
nected Kernel-based Virtual Machines (KVMs) are deployed
on a server with a core i5-3470 processor and 8GB of RAM.
The topology of our SDN testbed is illustrated in Fig. 7.
More specifically, {v1,u1},{v5,u2,u3,u4} and {v3,u5,u6} are

1844 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, AUGUST 2018

Fig. 3. Number of required flow entries on each switch.

Fig. 4. Number of required group entries on each switch.

Fig. 5. Link load vs. Number of group entries.

run on 3 servers, respectively. These servers (acting as one
virtual switch and several terminals) are connected with 4 H3C
switches (v2,v4,v6,v7).

2) Testing Results: We run three sets of testings on the SDN
platform. In each set, we generate 300 flows by default in
the network, and the expected traffic intensity for each flow
is 1Mbps. Moreover, we simulate a distribution with 20% of
elephant flows and 80% of mice flows as observed in [10].
We first observe the number of required flow/group entries
on all switches. The testing results are presented in Figs.
3-4. Fig. 3 shows that DevoFlow and RBDP need 24 and
6 flow entries at most, respectively. That’s because DevoFlow
combines aggregate routing and per-flow routing while RBDP
only adopts aggregate routing. Fig. 4 shows that RBDP and
ECMP need 5 and 2 group entries at most, respectively.
That’s because our RBDP algorithm takes the group table size
constraint into consideration. The second set of tests observes
the link load by changing the number of available group entries
on each switch. Fig. 5 shows that RBDP reduces the link load
by about 42% compared with ECMP-G while using the same
number of flow/group entries. Moreover, with the increase of
the number of group entries, the link load of RBDP is lower
than that of DevoFlow. The last group of testing shows the
link load by changing the number of flows. The testing results
in Fig. 6 indicate that RBDP reduces the link load by about
28%, 45% and 60% compared with ECMP, ECMP-G and
OSPF, respectively, and achieve similar routing performance
as DevoFlow.

C. Simulation Evaluation

1) Simulation Setting: In the simulations, we selected two
practical topologies, one for ISP networks and one for campus

Fig. 6. Ink load vs. Number of flows.

Fig. 7. Topology of the SDN testbed. Our SDN testbed consists of 7 phys-
ical/virtual switches (i.e., 4 physical SDN-enabled H3C switches: v2, v4,
v6, v7 and 3 Open vSwitches: v1, v3, v5) and 6 virtual machines
(u1,u2,u3,u4,u5,u6). Moreover, each vSwitch and its connected virtual
machines are run on a server with a core i5-3470 processor and 8GB of
RAM. For example, vSwitch v5 and three virtual machines {u2, u3, u4} are
run on the same server.

networks. The first topology is an ISP backbone network,
denoted by (a), which contains 87 switches and 174 servers
from Rocketfuel project [30]. The second one is a campus
topology [31], denoted by (b), which contains 100 switches
and 200 servers from Monash University [32]. For both
topologies, each server runs 10 virtual machines (VMs), and
each link has a uniform capacity, 10Gbps. We execute each
simulation 100 times and average the numerical results. We
conduct our simulations using realistic workloads based on
empirically observed traffic patterns in real networks. Similar
to [33], we consider three synthetic workloads from (1) web
search services [34], (2) enterprise networks [35], and (3) data
mining services [14]. The authors of [10] have shown that
less than 20% of the top-ranked flows may be responsible
for more than 80% of the total traffic. Thus, we allocate
the size for all workloads according to this 2-8 distribution
and the expected traffic demand of each flow is 0.5Mbps.
We use iperf2 (Version 2.0.5) server-client tool [36] to simulate
diverse kinds of flows, such as different packet size and traffic
duration. First, we deploy iperf servers at some hosts, the other
hosts act as clients. Then, we generate TCP/UDP flows with
different MSS (Maximum Segment Size) or Packet-Size to
simulate different volume of each flow. We start several clients
on one host to simulate multiple applications.
The flow table size is set as 5k for the following reasons.

On one hand, due to the high price and energy-consuming of
TCAM, SDN switch usually contains less than 5k flow entries
(e.g., Broadcom Trident has 4k flow entries [20]). On the
other hand, even if some commodity switches have larger
rules, these rules may have to be shared by various functions
(e.g., security, management and flow statistics collection [7]).
The number of available group entries is set as 300 on each
switch by default for the same reason. Main code is published
at https://github.com/sdntest/default_path. Note that, in real

ZHAO et al.: JOINT OPTIMIZATION OF FLOW TABLE AND GROUP TABLE FOR DEFAULT PATHS IN SDNs 1845

TABLE II

COMPARISON ON NUMBER OF FLOW ENTRIES

TABLE III

COMPARISON ON NUMBER OF GROUP ENTRIES

networks, there may encounter link failures and sudden traffic
changes, especially in data center networks. We have not
considered these unpredictable situations in our evaluation.
Thus, we can say that the evaluation is a preliminary analysis
and that consistent amount of future work is still needed to
cast RBDP to data center networks.

2) Simulation Results: We run four sets of simulations
on two different topologies to check the effectiveness of
our proposed algorithm. The first set of simulations shows
the required flow/group entries by different algorithms in a
network which contains 300k flows (about 150 flows per VM).
We execute four algorithms on two different topologies, and
the simulation results are shown in Tables II and III. From
Table II, we can see that our proposed algorithm reduces the
flow entries about 60% compared with DevoFlow on average.
For example, for topology (a), RBDP only needs no more than
2k flow entries while DevoFlow needs about 5k flow entries at
most and 4.3k flow entries on average. Note that, the number
of required entries for DevoFlow will increase with the number
of flows and there may contain millions of flows in some large
networks. Thus, it is highly meaningful to reduce the number
of flow entries that are used to support routing, so that more
flow entries can be reserved for supporting other policies [7].
Since only ECMP, ECMP-G and RBDP need to install group
entries on switches, we compare the use of group entries of
ECMP, ECMP-G and RBDP on both two topologies. Table III
shows that the number of required group entries of RBDP is
same as that of ECMP-G and fewer than that of ECMP. For
example, when there are 300k flows in topology (b), ECMP
needs about 1.4k group entries at most and about 0.9k group
entries on average while RBDP only needs about 0.3k group
entries at most and 0.23k group entries on average. In other
words, our proposed algorithm can reduce group entries about
74% compared with ECMP.
The second set of simulations mainly shows how the number

of flows affects the routing performance on two topologies.
We change the number of flows from 100k to 900k, and the
simulation results are shown in Figs. 8-13. Figs. 8 and 9 show
that the link load ratio increases with the number of flows
for all algorithms. Our RBDP algorithm has decent link load
ratio performance on both two topologies. For example, when
there are 300k flows, the proposed RBDP algorithm reduces

Fig. 8. LLR vs. Number of flows for topology (a).

Fig. 9. LLR vs. Number of flows for topology (b).

Fig. 10. CDF of LLR for topology (a).

link load ratio about 39% and 42% compared with the OSPF
method in topologies (a) and (b), respectively. Meanwhile,
RBDP can reduce link load ratio by about 25% compared
with ECMP-G using the same number of flow/group entries,
and achieve better link load ratio performance compared with
ECMP, which requires more group entries than ours illustrated
by Table III. Moreover, our proposed algorithm can achieve
similar performance as OPT-R, which means efficiency of
the approximation algorithm to solve the NP-hard problem.
Even compared with DevoFlow, which increases the number
of required flow entries about 60%, our proposed algorithm
also can reduce link load ratio about 13%. We also give
the cumulative distribution function (CDF) of the link load
ratio under a fixed number (e.g.,50 × 104) of flows, shown
in Figs. 10-11. The results indicate that our proposed RBDP
algorithm reduces the variance in the LLR of all links com-
pared with other algorithms. For example, in topology (b),
over 80% of links have a link load ratio between 0.2-0.8 by
our solution, while only 37% of links have a link load ratio
between 0.2-0.8 and over 30% of links encounter congestion
by OSPF. Figs. 12-13 indicate that the throughput factor
decreases with the number of flows in both two topologies. For
example, when there are 600k flows in topology (a), RBDP
improves the network throughput factor about 115% compared
with the OSPF method, and achieves better throughput factor
compared with DevoFlow and ECMP.
The third set of simulations shows how the number of

available group entries affects the routing performance on two
topologies. The results are shown in Figs. 14-17. By default,
there are 400k flows in Figs. 14-15. These two figures show
that, the link load ratio of our RBDP algorithm is better

1846 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, AUGUST 2018

Fig. 11. CDF of LLR for topology (b).

Fig. 12. NTF vs. Number of flows for topology (a).

Fig. 13. NTF vs. Number of flows for topology (b).

Fig. 14. LLR vs. Number of group entries for topology (a).

than that of DevoFlow when the number of available group
entries is more than 250. Meanwhile, RBDP can achieve lower
link load ratio compared with ECMP-G while using the same
number of flow/group entries. For example, when the group
table size constraint is 600 in topology (a), RBDP reduces
link load ratio by about 45% and 35% compared with OSPF
and ECMP-G, respectively. By default, there are 800k flows
in Figs. 16 and 17. These two figures show the throughput
factor performance by changing the number of available group
entries on two different topologies. When each switch contains
300 available group entries in topology (a), our proposed
algorithm can increase throughput factor about 110% and 48%
compared with OSPF and ECMP-G, respectively.
The last set of simulations illustrates the effectiveness of the

combination scheme of default paths and per-flow paths, which
has been discussed in Section III-D. To avoid sub-optimal
performance caused by traffic dynamics, we re-run our RBDP
algorithm every 5 minutes and select some elephant flows to
re-route through per-flow routing every minute. The number
of available flow entries is set to 200 and 500, respectively,
to shown the effects of the number of occupied flow entries

Fig. 15. LLR vs. Number of group entries for topology (b).

Fig. 16. NTF vs. Number of group entries for topology (a).

Fig. 17. NTF vs. Number of group entries for topology (b).

Fig. 18. Time vs. LLR for Topology (a).

for per-flow routing. As shown in Figs. 18-19, after we deploy
default paths, the network performance will get worse over
time due to traffic dynamics. However, if we re-run the RBDP
algorithm during a suitable interval (e.g., 5 min), we can
relieve the impacts to a certain extent. Since only a very
small part of flows will be affected if we update per-flow
paths, we can update the per-flow paths in a short interval to
achieve better network performance. For example, as shown
in Fig. 18, the update of default paths helps to reduce the LLR
from 0.89 to 0.8, and the combination scheme can reduce
the LLR from 0.89 to 0.75 with a small number of flow
entries. Moreover, the combination scheme helps to keep a
nice performance before the update of default paths (e.g.,
the time from 1 minute to 5 minutes).
From these simulation results, we can draw the following

conclusions. First, from Table II, RBDP reduces the number
of required flow entries about 60% compared with DevoFlow.
Second, RBDP reduces the number of required group entries
about 74% compared with ECMP from Table III. Third, from
Figs. 8-13, our algorithm improves routing performance about

ZHAO et al.: JOINT OPTIMIZATION OF FLOW TABLE AND GROUP TABLE FOR DEFAULT PATHS IN SDNs 1847

Fig. 19. Time vs. LLR for topology (b).

35% on average compared with OSPF while using 10% addi-
tional group entries, and improves routing performance about
13% on average compared with DevoFlow while reducing
the flow entries about 60% and using 10% additional group
entries. Moreover, RBDP can achieve similar performance
compared with ECMP while reducing the number of required
group entries by about 74%. Fourth, RBDP can increase rout-
ing performance by about 35% compared with ECMP-G using
the same number of flow/group entries by Figs. 14-17. Fifth,
the RBDP algorithm can achieve similar network performance
compared with OPT-R. Last but not least, the combination
scheme of default paths and per-flow paths can greatly relieve
the impacts of traffic dynamics.

V. RELATED WORKS

With its advantages, SDN is becoming an innovative tech-
nology behind many traffic engineering solutions for both
campus networks and data center networks. Since routing is a
critical issue to achieve better network performance in an SDN
network, there are many related works to handle the routing
problem. To provide the fine-grained flow control, a natural
way is to install one individual forwarding rule for each flow.
M. Al-Fares et al. [9] designed a dynamic flow scheduling for
data center networks that set up a rule for every new flow in
the network.
As the networks are experiencing more and more flows

while the commodity switches only contain a few thousand
TCAM entries [10], [16], [37], these works can not be applied
directly to scenarios with a massive number of flows in
some practical applications. This challenge can be solved by
dropping some flows or using wildcard routing. The authors
of [27] considered the throughput maximization problem under
the forwarding table size constraint. They formulated an offline
routing optimization problem with a flow table size constraint
and presented an approximate solution for the NP-hard prob-
lem. They dropped some flows so that the controller could
install per-flow rules for other flows with flow-table size
constraint. M. Huang et al. [38] studied dynamic unicast and
multicast routing in SDNs under both link/switch capacities
and request bandwidth demands constraints. They rejected the
request if one of the constraint could not be met. However,
since the dropped flows can not be served, it reduces the user
experience.
To serve all flows in the network and accommodate the flow-

table size constraint, default path [10], [39]–[43] is an efficient
solution for SDNs. Many works based on wildcard routing
have been proposed to minimize the rule space consumption on
switches. Devoflow [10] combined pre-installed wildcard rules
and dynamically-established exact rules. DomainFlow [44]
divided the network into two parts, one part using wildcard
rules and another part using exactly matching rules. However,
these works did not mention how to deploy default paths.

As in [10], [45], OSPF was the widely-used method for
default paths. However, these works suffered from worse
network performance, for many flows would be forwarded
through one single path. To improve the network performance,
multipath forwarding has been proposed. Equal Cost Multipath
(ECMP) [14], [46] is the most popular technique for spreading
traffic among available paths, which has been applied in [2],
[3], [47]. ECMP splits a set of flows uniformly over a group
of next hops to achieve load balancing. However, it splits
the flow space equally, rather than based on the network
status. This weakness will cause network imbalance, especially
when handling elephant flows or running on the network of
unequal link capacities. Besides, the group table size constraint
is not considered in the ECMP protocol. To handle the
weakness of ECMP, WCMP [15] focused on how to establish
weighted multipath to divide traffic based on a given ratio.
Niagara [16] handled weighted splits through prefix and suffix.
This problem was completely different from ours, which takes
advantages of group table and flow table into account for
deploying default paths. We should note that, to apply the
default paths, some works first identified elephant flows [23],
[48]–[50]. Then, they forwarded elephant flows at per-flow
level, and the rest (mice) flows were forwarded through
default paths. However, the specific methods for default path
deployment are not mentioned or emphasized in these works.
All the above works can not achieve trade-off optimiza-

tion between the occupied flow/group entries and network
performance. The per-flow routing methods can achieve better
network performance while the required flow entries are much
more than flow table size constraint. Moreover, the previous
default path methods, such as OSPF and ECMP, may lead
to worse network performance or can not satisfy the group
table size and action buckets constraints. In contrast, this paper
focuses on deploying default paths to achieve better trade-off
performance by joint optimization of flow table and group
table in an SDN network.

VI. CONCLUSION

In this paper, we have studied efficient deployment of
default paths by joint optimization of flow table and group
table for an SDN. We have designed a rounding-based algo-
rithm for the DP-JFG problem. The testing results on an SDN
platform and the extensive simulation results show the high
efficiency of our algorithm for default paths deployment. In
the future, we will study how to deal with some unpredictable
situations, including link failures and traffic abrupt changes.

APPENDIX A
PROOF OF THEOREM 1

To show the NP-hardness, we first give the following
definition.

Definition 7 (Identical Parallel Machines Scheduling
(IPMS) Problem [24]): Given m parallel machines and q
independent jobs, each job is to be assigned to one of the
machines. All the parallel machines are identical in terms of
their processing speed. Thus, every job will take the same
amount of processing time on each machine. The objective is
to find a schedule that minimizes the makespan.

Proof: In the following, we prove the NP-hardness by
showing that the identical parallel machines scheduling prob-
lem [24] is a special case of the DP-JFG problem. We consider
an arbitrary IPMS instant S. There are a set of m machines

1848 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, AUGUST 2018

Fig. 20. A special example of the DP-JFG problem.

and a set of q jobs. Moreover, the processing time of job i on
each machine is denoted as pi.
Next, we consider a special example of the DP-JFG prob-

lem. As shown in Fig. 20, there are q macroflows in the
network, in which each macroflow is from ui to u′

i, with
1 ≤ i ≤ q. The capacities of links v0vi and viv

′
0 are

set as c0 and ∞, respectively, where c0 is constant, e.g.,
1Gbps or 10Gbps. Assume that there are q available group
entries on each switch, and each group entry can support
2 action buckets. Thus, for each macroflow γ ∈ Γ, we can only
choose another feasible path except the pre-deployed (e.g.,
OSPF) path as default paths. To simplify the problem, for
each macroflow γ, we assume that the traffic amount through
its pre-deployed path has been determined. We will choose one
feasible path for each macroflow γi to forward its remaining
traffic, pi ·c0, so as to minimize the maximum traffic load ratio
in a network. Thus, we regard each macroflow from uj to u′

j
and each link v0vi as a job j and a machine i. Moreover,
the processing time for each job j is pi·c0

c0
= pi. This is

just the IPMS instant S. As a result, each IPMS instant is a
special instant of DP-JFG, which shows the NP-hardness of the
DP-JFG problem. �

APPENDIX B
PROOF OF LEMMA 3

Proof: By the algorithm description, for terminal u and
switch v, we divide all links Eu(v) with zu

e > 0 into two
subsets, Pb

v,u and P
s
v,u. On the one hand, according to Eq. (7),

the total weight of all links in Pb
v,u is:

wb
v,u =

∑
e∈Pb

v,u

zu
e · (1 − wu

v) (11)

On the other hand, by Eq. (9), the total weight of all links
in Ps

v,u is:

ws
v,u =

∑k′

j=1

zj · zs
v,u · (1 − wu

v)
k′ = zs

v,u · (1 − wu
v) (12)

Combining Eqs. (8), (11) and (12), we have

wb
v,u + ws

v,u

=
∑

e∈Pb
v,u

zu
e · (1 − wu

v) +
∑

e∈Ps
v,u

zu
e · (1 − wu

v)

=
∑

e∈Eu(v)
zu

e · (1 − wu
v) = 1 − wu

v (13)

Thus, the total weight of all the chosen links on each group
entry is wu

v + wb
v,u + ws

v,u = 1 �

APPENDIX C
PROOF OF LEMMA 4

Proof: Let f̃(e, u) and f̃(v, u) denote the traffic load on
link e and the traffic amount on switch v from macroflows Γu

by the linear program LP1, respectively. By the algorithm,
the controller will derive integer solution ĝu

v one by one.
We consider the situation that the controller processes the
first variable gu

v in the network. After the rounding operation,
if ĝu

v = 1, we install a group entry on switch v for terminal u.
Otherwise, we forward all macroflows γ ∈ Γu through the link
overlapped with pre-deployed path from switch v to terminal
u. After this operation on variable gu

v , the traffic on switch
v from macroflows Γu is denoted by f̂t(v, u). This operation
will not affect the incoming traffic on switch v, i.e.,

f̂t(v, u) = f̃(v, u). (14)

Then, we consider the traffic load on the outgoing links from
switch v. The traffic load on link e ∈ E(v) from macroflows
Γu is denoted by f̂t(e, u) after the rounding process. We prove
that, for each link e ∈ E(v), E

[
f̂t(e, u)

]
= f̃(e, u), so that

this rounding operation will not affect the expected traffic load
of link e ∈ E. There are three cases of link e ∈ E(v).
1) If link e ∈ Pb

v,u, combining Eqs. (5), (6), (7) and (14),
we know:

E

[
f̂t(e, u)

]
= wu

e · f̂t(v, u) · g̃u
v

= zu
e · (1 − wu

v) · f̃(v, u) · g̃u
v

= zu
e · 1 − zu

v

g̃u
v

· f̃(v, u) · g̃u
v

=
∑

γ∈Γu

∑
e∈p:p∈Pγ

yp
γf(γ) = f̃(e, u) (15)

2) If link e ∈ Ps
v,u, combining Eqs. (5), (6), (9) and (14),

we have:

E

[
f̂t(e, u)

]
=

p(e)
zj

· wu
e · f̂t(v, u) · g̃u

v

=
p(e)
zj

· zj · zs
v,u · (1 − wu

v)
h′ · f̃(v, u) · g̃u

v

=
h′ · zu

e

zs
v,u

· zs
v,u · (1 − wu

v)
h′ · f̃(v, u) · g̃u

v

=
∑

γ∈Γu

∑
e∈p:p∈Pγ

yp
γf(γ) = f̃(e, u) (16)

3) If link e = eu
v , following Eqs. (4) and (6), it follows:

E

[
f̂t(e, u)

]
= wu

v · f̂t(v, u) · g̃u
v + f̂t(v, u) · (1 − g̃u

v)

= zu
v · f̃(v, u)

=
∑

γ∈Γu

∑
eu

v∈p:p∈Pγ

ỹp
γf(γ)= f̃(e, u) (17)

Thus, the expected traffic load on each link e is:

E

[
f̂t(e)

]
=E

[∑
u∈U

f̂t(e, u)
]
=E

[∑
u∈U

f̃(e, u)
]
= f̃(e)

(18)

In a similar way, after we install all the required group
entries, the expected traffic load on each link e is same
as f̃(e). �

ZHAO et al.: JOINT OPTIMIZATION OF FLOW TABLE AND GROUP TABLE FOR DEFAULT PATHS IN SDNs 1849

APPENDIX D
PROOF OF THEOREM 6

We give two famous theorems for probability analysis.
Theorem 8 (Chernoff Bound): Given n independent vari-

ables: x1, x2, . . . , xn, where ∀xi ∈ [0, 1]. Let μ = E[
∑n

i=1 xi].

Then,Pr
[

n∑
i=1

xi ≥ (1 + ε)μ
]
≤ e

−ε2μ
2+ε , where ε is an arbitrar-

ily positive value.
Theorem 9 (Union Bound): Given a countable set of n

events: A1, A2, . . . , An, each event Ai happens with possi-

bility Pr(Ai). Then, Pr(A1 ∪ A2 ∪ . . . ∪ An) ≤
n∑

i=1

Pr(Ai).

Note that, by Eq. (2), we know that
∑

u∈U g̃u
v ≤ G(v)

before updating. Since only a few number of variables (less
than 0.4%) do not obey g̃u

v ≥ 1− zu
v , we assume that it also

follows
∑

u∈U g̃u
v ≤ G(v) after updating in most situation.

Proof: The number of required group entry on switch
v for terminal u is defined as a variable ϕv,u. The expected
number of required group entries is:

E

[∑
u∈U

ϕv,u

]
=

∑
u∈U

E[ϕv,u] =
∑
u∈U

g̃u
v ≤ G(v) (19)

Combining Eq. (19) and the definition of α′ in Eq. (10),
we have: ⎧⎪⎪⎨⎪⎪⎩

ϕv,u · α′

G(v)
∈ [0, 1]

E

[∑
u∈U

ϕv,u · α′

G(v)

]
≤ α′.

(20)

Then, by applying theorem 8, assume that σ is an arbitrary
positive value. It follows:

Pr

[∑
u∈U

ϕv,u · α′

G(v)
≥ (1 + σ)α′

]
≤ e

−σ2α′
2+σ (21)

Now, we assume that

Pr

[∑
u∈U

ϕv,u · α′

G(v)
≥ (1 + σ)α′

]
≤ e

−σ2α′
2+σ ≤ F

n
(22)

Then, we get the result:

σ ≥
log n

F +
√

log2 n
F + 8α′ log n

F
2α′ , n ≥ 2 (23)

Set F = 1
n2 . Apparently F → 0 as n → ∞. With respect

to Eq. (23), we set

σ =
log n

F + log n
F + 4α′

2α′

=
6 logn + 4α′

2α′ =
3 logn

α′ + 2 (24)

By applying Theorem 9, following Eq. (22), we have,

Pr

[∨
v∈V

∑
u∈U

ϕv,u

G(v)
≥ (1 + σ)

]

≤
∑
v∈V

Pr

[∑
u∈U

ϕv,u

G(v)
≥ (1 + σ)

]

≤ n · 1
n3

=
1
n2

, σ ≥ 3 logn

α′ + 2 (25)

Then Eq. (25) is guaranteed with 1 + σ = 3 log n
α′ + 3. That

means, after the rounding process, the total number of required
group entries on any switch v will not exceed the number of
available group entries G(v) by a factor of 3 log n

α′ + 3. �

REFERENCES

[1] G. Zhao, H. Xu, S. Chen, L. Huang, and P. Wang, “Deploying default
paths by joint optimization of flow table and group table in SDNs,” in
Proc. IEEE ICNP, Oct. 2017, pp. 1–10.

[2] C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in Proc. ACM SIGCOMM, 2013, pp. 15–26.

[3] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 3–14, 2013.

[4] OpenFlow Switch Specification Version 1.3.4, Open Netw. Found., 2014.
[5] L.-H. Huang, H.-C. Hsu, S.-H. Shen, D.-N. Yang, and W.-T. Chen,

“Multicast traffic engineering for software-defined networks,” in Proc.
IEEE INFOCOM, Apr. 2016, pp. 1–9.

[6] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite CacheFlow
in software-defined networks,” in Proc. 3rd ACM Workshop Hot Topics
Softw. Defined Netw., 2014, pp. 175–180.

[7] Z. A. Qazi et al., “SIMPLE-fying middlebox policy enforcement
using SDN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 27–38, 2013.

[8] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements and analysis,” in Proc.
ACM SIGCOMM, 2009, pp. 202–208.

[9] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
NSDI, vol. 10, 2010, p. 19.

[10] A. R. Curtis et al., “DevoFlow: Scaling flow management for high-
performance networks,” Comput. Commun. Rev., vol. 41, no. 4,
pp. 254–265, Aug. 2011.

[11] H. Xu et al., “Real-time update with joint optimization of route selection
and update scheduling for SDNs,” in Proc. IEEE 24th Int. Conf. Netw.
Protocols (ICNP), Nov. 2016, pp. 1–10.

[12] H. Xu et al., “Joint route selection and update scheduling for low-
latency update in SDNs,” IEEE/ACM Trans. Netw., vol. 25, no. 5,
pp. 3073–3087, Oct. 2017.

[13] H. Xu, Z. Yu, C. Qian, X.-Y. Li, and Z. Liu, “Minimizing flow
statistics collection cost of SDN using wildcard requests,” in Proc. IEEE
INFOCOM, May 2017, pp. 1–9.

[14] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62,
2009.

[15] J. Zhou et al., “WCMP: Weighted cost multipathing for improved
fairness in data centers,” in Proc. ACM 9th Eur. Conf. Comput. Syst.,
2014, p. 5.

[16] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in Proc. 11th ACM Conf.
Emerg. Netw. Exp. Technol., 2015, pp. 1–6.

[17] OpenFlow Switch Specification Version 1.1.0, Operating Syst. Consor-
tium, 2011.

[18] OpenFlow Switch Specification Version 1.5.1, Open Netw. Found., 2014.
[19] G. Zhao, L. Huang, Z. Yu, H. Xu, and P. Wang, “On the effect of flow

table size and controller capacity on SDN network throughput,” in Proc.
IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–6.

[20] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “PAST: Scalable
Ethernet for data centers,” in Proc. ACM 8th Int. Conf. Emerg. Netw.
Exp. Technol., 2012, pp. 49–60.

[21] H. Chen and T. Benson, “The case for making tight control plane latency
guarantees in SDN switches,” in Proc. ACM Symp. SDN Res., 2017,
pp. 150–156.

[22] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-defined
networking through hybrid switching,” in Proc. IEEE INFOCOM,
May 2017, pp. 1–9.

[23] Z. Hu and J. Luo, “Cracking network monitoring in DCNs with SDN,”
in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr./May 2015,
pp. 199–207.

[24] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness (Series of Books in the Mathematical
Sciences). San Francisco, CA, USA: Freeman, 1979, p. 340.

[25] A. Srinivasan, Approximation Algorithms Via Randomized Rounding: A
Survey (Advanced Topics in Mathematics). Polish Scientific Publishers
PWN, 1999, pp. 9–71.

1850 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, AUGUST 2018

[26] H. Xu et al., “Incremental deployment and throughput maximization
routing for a hybrid SDN,” IEEE/ACM Trans. Netw., vol. 25, no. 3,
pp. 1861–1875, Jun. 2017.

[27] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect
of forwarding table size on SDN network utilization,” in Proc. IEEE
INFOCOM, Apr./May 2014, pp. 1734–1742.

[28] T. M. Thomas, II, OSPF Network Design Solutions, vol. 10. Indianapolis,
IN, USA: Cisco Press, 2003.

[29] Open vSwitch: Open Virtual Switch. Accessed: Jun. 16, 2018. [Online].
Available: https://www.openvswitch.org/download/

[30] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” ACM SIGCOMM Comput. Commun. Rev., vol. 32,
no. 4, pp. 133–145, 2002.

[31] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[32] The Network Topology From the Monash University. Accessed:
Jun. 16, 2018. [Online]. Available: https://ecse.monash.edu/twiki/bin/
view/InFocus/LargePacket-switchingNetworkTopologies

[33] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow:
Resilient asymmetric load balancing with flowlet switching,” in Proc.
NSDI, 2017, pp. 407–420.

[34] M. Alizadeh et al., “Data center TCP (DCTCP),” ACM SIGCOMM
Comput. Commun. Rev., vol. 40, no. 4, pp. 63–74, Oct. 2010.

[35] M. Alizadeh et al., “CONGA: Distributed congestion-aware load balanc-
ing for datacenters,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 503–514, 2014.

[36] J. Dugan, Iperf Tutorial. Columbus, OH, USA: JointTechs, 2010 pp. 1–4.
[37] O. Rottenstreich and J. Tapolcai, “Lossy compression of packet clas-

sifiers,” in Proc. 11th ACM/IEEE Symp. Archit. Netw. Commun. Syst.,
May 2015, pp. 39–50.

[38] M. Huang et al., “Dynamic routing for network throughput maximization
in software-defined networks,” in Proc. IEEE INFOCOM, Apr. 2016,
pp. 1–9.

[39] W. Braun and M. Menth, “Wildcard compression of inter-domain
routing tables for OpenFlow-based software-defined networking,”
in Proc. 3rd IEEE Eur. Workshop Softw. Defined Netw., 2014,
pp. 25–30.

[40] A. S. Iyer, V. Mann, and N. R. Samineni, “SwitchReduce: Reducing
switch state and controller involvement in OpenFlow networks,” in Proc.
IEEE IFIP Netw. Conf., May 2013, pp. 1–9.

[41] M. Rifai et al., “Too many SDN rules? Compress them with MINNIE,”
in Proc. IEEE GLOBECOM, Dec. 2015, pp. 1–7.

[42] M. Rifai et al., “MINNIE: AN SDN world with few compressed
forwarding rules,” Ph.D. dissertation, INRIA Sophia Antipolis Méditer-
ranée, Biot, France, 2016.

[43] B. Yan, Y. Xu, H. Xing, K. Xi, and H. J. Chao, “CAB: A reac-
tive wildcard rule caching system for software-defined networks,” in
Proc. ACM 3rd Workshop Hot Topics Softw. Defined Netw., 2014,
pp. 163–168.

[44] Y. Nakagawa et al., “DomainFlow: Practical flow management method
using multiple flow tables in commodity switches,” in Proc. ACM
CoNext, 2013, pp. 399–404.

[45] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering
in software defined networks,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 2211–2219.

[46] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm,
document RFC 2992, 2000.

[47] P. Patel et al., “Ananta: Cloud scale load balancing,” ACM SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 207–218, 2013.

[48] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. ACM 7th Conf. Emerg.
Netw. Exp. Technol., 2011, Art. no. 8.

[49] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in Proc. IEEE INFOCOM, Apr. 2011, pp. 1629–1637.

[50] J. Liu et al., “SDN based load balancing mechanism for elephant
flow in data center networks,” in Proc. IEEE Int. Symp. Wireless Pers.
Multimedia Commun. (WPMC), Sep. 2014, pp. 486–490.

Gongming Zhao is currently pursuing the
Ph.D. degree in computer science with the
University of Science and Technology of China.
His main research interests are software-defined
networks and cloud computing.

Hongli Xu (M’08) received the B.S. degree in
computer science and the Ph.D. degree in computer
software and theory from the University of Science
and Technology of China in 2002 and 2007, respec-
tively. He is currently an Associate Professor with
the School of Computer Science and Technology,
University of Science and Technology of China.
He has authored or coauthored over 70 papers, and
held about 30 patents. His main research interest is
software-defined networks, cooperative communica-
tion, and vehicular ad hoc network.

Shigang Chen (F’16) received the B.S. degree in
computer science from the University of Science
and Technology of China in 1993, and the M.S. and
Ph.D. degrees in computer science from the Univer-
sity of Illinois at Urbana–Champaign in 1996 and
1999, respectively. He served as the CTO for Chance
Media Inc. from 2012 to 2014. He worked with
Cisco Systems for three years before joining the
University of Florida in 2002. He is currently a
Professor with the Department of Computer and
Information Science and Engineering, University of

Florida. He has authored over 160 peer-reviewed journal/conference papers.
His research interests include computer networks, Internet security, wireless
communications, and distributed computing. He was a recipient of the IEEE
Communications Society Best Tutorial Paper Award and the NSF CAREER
Award. He holds 12 U.S. patents. He served in various chair positions or as
committee members for numerous conferences. He is an ACM Distinguished
Member and a Distinguished Lecturer of the IEEE Communication Society.
He was an Associate Editor for the IEEE/ACM TRANSACTIONS ON NET-
WORKING, the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, and a
number of other journals.

Liusheng Huang received the M.S. degree in com-
puter science from the University of Science and
Technology of China in 1988. He is currently a
Senior Professor and a Ph.D. Supervisor with the
School of Computer Science and Technology, Uni-
versity of Science and Technology of China. He has
authored six books and over 300 journal/conference
papers. His research interests are in the areas of
Internet of Things, vehicular ad hoc network, infor-
mation security, and distributed computing.

Pengzhan Wang received the B.S. degree in com-
puter science and the Ph.D. degree in computer
software and theory from the University of Science
and Technology of China in 2013 and 2018, respec-
tively. His main research interest is software-defined
networks.

